
Infinite Series:  A Compact Reference 
Compiled by Damon Scott 

 

Table 1:  Basic Tests for Convergence 
 
Name When to use Hypotheses What you do What you conclude 
Geometric 
Series 
Test 

(a)  You see a geometric series, one 
where each term is some fixed mul-
tiple of the term before it.  (b)  You 
see the base is fixed, and the expo-
nent is the index of summation. 

Series  
must be  
geometric. 

Manipulate ∑∞
=1n na  until it looks like 

∑∞
=1n

nr  where r is fixed with respect  
to n. 

•   ⇒−∈ )1,1(r   
     ∑∞

=1n na  converges. 
•   ⇒−∉ )1,1(r  
     ∑∞

=1n na  diverges 
Fixed Power 
Series Test 
a.k.a.  
The p-Series 
Test 

(a)  You see a fixed power series, 
one of the form ∑ )/(1 pn . (b)  You 
see the exponent is fixed, and the 
base is the index of summation. 

Series 
must be  
a fixed 
power 
series. 

Manipulate ∑∞
=1n na  until it looks like 

∑∞
=1

1
n pn

 where p is fixed with respect 

to n. 

•   ⇒−∞∈ ]1,(p  
     ∑∞

=1n na  diverges. 
•   ⇒∞∈ ),1(p  
     ∑∞

=1n na  converges. 
The 
nth Term 
Test 

(a)  Terms are not going to zero: the 
series isn’t even trying to converge.  
(b)  Terms contain unusually strange 
or bizarre components.   
(c)  Alternating Series Test failed. 

None. 
 

Find  n
n

a
∞→

lim . 

Alternatively, find n
n

a
∞→

lim  

and reach the same conclusions. 

•  nalim = 0  ⇒   Test fails (!) 
•  ∑⇒≠ nn aa 0lim  div. 
•  nalim  does not exist 
     ⇒   ∑ na  diverges. 

Simple 
Comparison 
Test 

(a)  You see an inequality going the 
right way.   
(b)  You see sin n or cos n as a 
factor (must couple with Absolute 
Convergence Test.) 

Everything 
must be 
positive. 

Choose, as test series, ∑∞
=1n nb . 

Show nn ba ≤  for all large n, 
or show nn ba ≥  for all large n. 

Find conv. or div. of ∑∞
=1n nb  

•   { nn ba ≤  and ∑ nb  conv.} 

     ⇒  ∑∞
=1n na  converges. 

•   { nn ba ≥  and ∑ nb  div.} 

     ⇒  ∑∞
=1n na  diverges. 

•   Other cases  ⇒   Test fails. 
Limit 
Comparison 
Test 

(a)  The sequence of terms, an, is a 
rational function of n. 
(b)  There are nuissance terms that 
you do not believe will affect 
convergence. 
 

Everything 
must be 
positive. 

Choose, as test series, ∑∞
=1n nb . 

   (Choose bn as equal to an but  
   without the “nuissance” terms). 

Find  L  =  
n

n
n b

a
∞→

lim  . 

Find conv. or div. of ∑ nb . 

•   ),0( ∞∈L  ⇒  ∑ na  and    
    ∑ nb  conv. or div. together. 
•   L = 0  ⇒   nn ba ≤ : conclude as 
     for Simple Comparison Test. 
•   nn baL ≥⇒∞= : conclude as 
     for Simple Comparison Test 

 



Table 2:  More Tests for Convergence 
 
Name When to use Hypotheses What you do What you conclude 
Integral 
Test 

(a)  The corresponding function is 
easy (or not too hard) to integrate. 
(b)  To prove convergence or 
divergence of some famous series. 

Terms 
must be 
positive 
and 
decreasing. 

Choose f (x)  so that f (n)  =  an  
     for all large n. 
Check that f is positive and decreasing. 
Find conv. or div. of    ∫∞1 )( dxxf .   
     (May start integral after 1 with same results.) 

•   f passes check  ⇒    
     ∫∞1 )( dxxf  and ∑∞

=1n na  
     conv. or div. together. 
•   f doesn’t pass check  ⇒    
     Test fails. 

Alternating 
Series Test 

(a)  You see  (–1)n or (–1)n+1 as a 
factor.  (b)  You see )(sin nπ  or 

)(cos nπ  as a factor.  (c)  Absolute 
Convergence Test failed. 

None. Answer: 
   *  Is  {an} alternating in sign? 
   *  Does 0→na  as ∞→n ? 

   *  Is { na } a decreasing function of n? 

•   3 Yesses  ⇒   
     ∑∞

=1n na  converges. 
•   0, 1 or 2 Yesses  ⇒  
     Test fails. 

Absolute 
Convergence 
Test 

(a)  When you would like all the 
terms to be positive to satisfy the 
hypotheses of another test. 

None. 
 

Find  conv. or div. of ∑∞
=1n na  

Note:  Do not find conv. or div of 
∑∞

=1n na  

•   Σ |an| conv. ⇒   Σ an conv.  
•   Σ |an|  div.  ⇒   Test fails. 

Absolute 
versus 
Conditional 
Convergence 
Test 

(a)  To show whether the 
convergence, if any, is absolute or 
conditional. 

None. Find conv. or div. of ∑∞
=1n na . 

If that diverges, then go on and determine 
conv. or div. of ∑∞

=1n na .  Alternatively, 

find conv. or div. of ∑∞
=1n na .  If it 

converges, then go on a determine conv 
or div. of Σ |an| . 

•  Σ |an| conv  
    ⇒  Σ an converges absolutely 
•  (Σ |an| div.  and  Σ an conv.)   
    ⇒  Σ an converges conditionally. 
•   Σ an div.  ⇒  Σ an diverges. 
•  (Σ |an| conv. and  Σ an div.) 
     ⇒  cannot happen. 

Ratio 
Test 

(a)  Exponentials or factorials (or 
both) are dominating. 
(b)  All “radius of convergence” 
problems. 

None. 
Find  r  =  

n

n
n a

a 1lim +
∞→

 
•   ⇒−∈ )1,1(r  
     ∑ na  conv. absolutely. 
•   ⇒∞∪−−∞∈ ),1()1,(r  
     ∑ na  diverges. 
•   r = –1 or r = +1  ⇒   Test fails. 

Root 
Test 
 

(a)  Terms appear to beg to have 
their nth roots taken 
 

Terms 
must be 
positive. 

Find  r  =  n n
n

a
∞→

lim  Conclude as for Ratio Test. 

 
 



Table 3:  Advanced Tests for Convergence 
 
Name When to use Hypotheses What you do What you conclude 
Definition 
of  
Convergence 
 

(a)  To prove from first principles. 
(b)  Sum telescopes. 

Note:  Only the difficulty of the “What 
you do” part prevents this from being a 
universal test.  There are no hypotheses 
and no “Test fails” component in the 
conclusion.  It is, after all, the very 
definition of convergence. 

None. Define  bn  =  ∑ =
n
i ia1 . 

Somehow find and simplify bn. 

Find n
n

b
∞→

lim . 

Notice whether this limit exists as a real 
number. (Note that 0 is a real number but “∞ ” 
is not.  The limit might also oscillate or otherwise 
fail to exist completely.) 

•   n
n

b
∞→

lim  exists as a real number 

     ∑⇒ ∞
=1i ia converges 

                to the same number,  
     ∑⇒ ∞

=1n na converges 
                to the same number. 
•   Otherwise ∑⇒ ∞

=1n na  diverges. 
Cauchy 
Condensation 
Test 

(a)  You want to remove 
logarithms. 
(b)  Just for fun. 
 

Terms must 
be positive 
and 
decreasing. 

Find the convergence or divergence of 
∑ ⋅∞

=1 )^2(2n n
n a  

•   ∑ ⋅∞
=1 )^2(2n n

n a  and ∑∞
=1n na  

     conv. or div. together. 

Ratio 
Comparison 
Test 1 

(a)  As an act of desperation. 
(b)  To prove some other tests. 

Everything 
must be 
positive. 
 

Form, as test series, ∑∞
=1n nb . 

Find  L1  =  
)/(
)/(

lim
1

1

nn

nn
n bb

aa

+

+
∞→

 . 

Find conv. or div. of ∑∞
=1n nb .  

•   L1 > 1 and ∑ nb  div  
     ⇒  ∑ na  div. 
•   L1 < 1 and ∑ nb  conv.  
     ⇒  ∑ na  conv. 
•   Other cases  ⇒   Test fails. 

Ratio 
Comparison 
Test 2 

(a)  As an act of desperation. Everything 
must be 
positive. 

Form, as test series, ∑∞
=1n nb . 

Find  L2  =  







− ++

∞→ n

n

n

n
n b

b
a

a 11lim  . 

Find conv. or div. of ∑∞
=1n nb .  

•   L2 > 0 and ∑ nb  div  
     ⇒  ∑ na  div. 
•   L2 < 0 and ∑ nb  conv.  
     ⇒  ∑ na  conv. 
•   Other cases  ⇒   Test fails. 

First Order 
Raabe’s 
Test 
 

(a)  Ratio or Root Test failed 
unexpectedly. 
(b)  Series is one of those named 
hypergeometric. 

Terms 
must be 
positive. 

Find  L  =  







−

+∞→
n

a
na

n

n
n 1
lim  . 

 

•   L > 1  ⇒   ∑ na  conv. 
•   L < 1  ⇒   ∑ na  div. 
•   L = 1  ⇒   Test fails. 
(Nota bene: the conclusion is reversed 
from that for  the Ratio Test.) 

 
 
 



Table 4:  Spectrum of Growing Functions 
All functions displayed on the spectrum go to infinity as n goes to infinity. 

 

ln (ln (n))    ||    ln (n)    ||    n0.01  n1/2 = n    n0.6    n    n2    n3.8      n5325       ||    (1.0001)n  (1.5)n    2n    en     327n    n!    nn        ||    e(e^n)    (n!)!    
 

Table 5:  Some Numerical Methods for Evaluating or Estimating the Sums of Convergent Series 
 
 
Name 

 
Hypotheses 

Sum being 
estimated 

 Best estimate 
for the sum 

Range 
of error  

 
Notes 

Finite  
Geometric 

r must be fixed with 
respect to n. ∑ =

b
an

nr  =
r

rr ba

−
− +

1

1
 ± 0 

Mnemonic:  The sum of a geometric 
series is the first term minus the after-
last term all over one minus the ratio. 

Infinite 
Geometric 

r must be fixed w.r.t. 
n and 1<r . ∑∞

=an
nr  =

r
r a

−1
 ±  0 Mnemonic:  As above, where “the after-

last term” is taken to be limn→∞ rn+1. 

Telescoping Series telescopes 1( )n nn a
b b∞

+=
−∑ = ba  –  )(lim nn b∞→  ±  0 Covers one case only; finding these sums 

in general is a technique not a formula. 

Stabilizing 
Digits 

Series converges by the 
Ratio Test, preferably 
with |r| not too close to 1. 

∑∞
=1n na   

Compute partial sums, and place partial sums 
in a column.  Look and see which digits have 
stabilized.  Those digits are good. 

± 10–m  
where m is the number of digits that have 
stabilized.  Do not use this method 
unless the hypotheses are satisfied! 

Integral Series converges by the 
Integral Test. ∑∞

=1n na  = ∑ ∫ ++−
=

∞1
1 2

)(m
n m

m
n

a
dxxfa  ±  

2
ma

 In practice, the error is usually much 
lower. 

Alternating Series converges by the 
A.S.T. ∑∞

=1n na  =
1

1 2
m m

nn

aa−

=
+∑  ±  

2
ma

 Be very careful with the signs, plus or 
minus, in applying this formula. 

 
 

Table 6:  Some Famous Series 

The Harmonic Series,  ∑∞
=1 /1n n , diverges, slowly, to infinity, as is shown by the Integral Test or by  Cauchy Condensation. 

The Alternating Harmonic Series, ∑ −∞
=

+
1

1 /)1(n
n n , converges by the Alternating Series Test; it is known to converge slowly to ln 2. 

The Zeno Series, 
1

(1/ 2)
n

n∞

=∑ , converges to 1 by the Definition of Convergence.  The Zero Series,   
1

0
n

∞

=∑ , converges to zero. 

The Infinite Accumulation of a Constant is the series  
1

1
n

∞

=∑ , which diverges to infinity by the Definition of Convergence. 

Various First-Logarithmic Series, ∑ ⋅∞
=2 )))((ln/(1n

pnn  for various fixed real numbers p, converge for p > 1 and diverge otherwise,  
as is shown by the Integral Test.  


