Infinite Series: A Compact Reference Compiled by Damon Scott

Table 1: Basic Tests for Convergence

Name	When to use	Hypotheses	What you do	What you conclude
Geometric Series Test	 (a) You see a geometric series, one where each term is some <i>fixed</i> multiple of the term before it. (b) You see the <i>base</i> is fixed, and the <i>exponent</i> is the index of summation. 	Series must be geometric.	Manipulate $\sum_{n=1}^{\infty} a_n$ until it looks like $\sum_{n=1}^{\infty} r^n$ where <i>r</i> is fixed with respect to <i>n</i> .	• $r \in (-1,1) \Rightarrow$ $\sum_{n=1}^{\infty} a_n$ converges. • $r \notin (-1,1) \Rightarrow$ $\sum_{n=1}^{\infty} a_n$ diverges
Fixed Power Series Test a.k.a. The <i>p</i> -Series Test	(a) You see a fixed power series, one of the form $\sum 1/(n^p)$. (b) You see the <i>exponent</i> is fixed, and the <i>base</i> is the index of summation.	Series must be a fixed power series.	Manipulate $\sum_{n=1}^{\infty} a_n$ until it looks like $\sum_{n=1}^{\infty} \frac{1}{n^p}$ where p is fixed with respect to n.	• $p \in (-\infty, 1] \Rightarrow$ $\sum_{n=1}^{\infty} a_n$ diverges. • $p \in (1, \infty) \Rightarrow$ $\sum_{n=1}^{\infty} a_n$ converges.
The n th Term Test	 (a) Terms are not going to zero: the series isn't even <i>trying</i> to converge. (b) Terms contain unusually strange or bizarre components. (c) Alternating Series Test failed. 	None.	Find $\lim_{n \to \infty} a_n$. Alternatively, find $\lim_{n \to \infty} a_n $ and reach the same conclusions.	 lim a_n = 0 ⇒ Test fails (!) lim a_n ≠ 0 ⇒ ∑a_n div. lim a_n does not exist ⇒ ∑a_n diverges.
Simple Comparison Test	 (a) You see an inequality going the right way. (b) You see sin <i>n</i> or cos <i>n</i> as a factor (must couple with Absolute Convergence Test.) 	Everything must be positive.	Choose, as test series, $\sum_{n=1}^{\infty} b_n$. Show $a_n \le b_n$ for all large n , or show $a_n \ge b_n$ for all large n . Find conv. or div. of $\sum_{n=1}^{\infty} b_n$	 {a_n ≤ b_n and ∑b_n conv.} ⇒ ∑_{n=1}[∞] a_n converges. {a_n ≥ b_n and ∑b_n div.} ⇒ ∑_{n=1}[∞] a_n diverges. Other cases ⇒ Test fails.
Limit Comparison Test	 (a) The sequence of terms, a_n, is a rational function of n. (b) There are nuissance terms that you do not believe will affect convergence. 	Everything must be positive.	Choose, as test series, $\sum_{n=1}^{\infty} b_n$. (Choose b_n as equal to a_n but without the "nuissance" terms). Find $L = \lim_{n \to \infty} \frac{a_n}{b_n}$. Find conv. or div. of $\sum b_n$.	 L∈(0,∞) ⇒ ∑a_n and ∑b_n conv. or div. together. L = 0 ⇒ a_n ≤ b_n: conclude as for Simple Comparison Test. L = ∞ ⇒ a_n ≥ b_n: conclude as for Simple Comparison Test

Table 2:	More	Tests for	r Convergence
----------	------	-----------	---------------

Name	When to use	Hypotheses	What you do	What you conclude
Integral Test	 (a) The corresponding function is easy (or not too hard) to integrate. (b) To prove convergence or divergence of some famous series. 	Terms must be positive and decreasing.	Choose $f(x)$ so that $f(n) = a_n$ for all large n . Check that f is positive and decreasing. Find conv. or div. of $\int_1^\infty f(x) dx$. (May start integral after 1 with same results.)	 f passes check ⇒ ∫₁[∞] f(x) dx and ∑_{n=1}[∞] a_n conv. or div. together. f doesn't pass check ⇒ Test fails.
Alternating Series Test	(a) You see $(-1)^n$ or $(-1)^{n+1}$ as a factor. (b) You see $\sin(\pi n)$ or $\cos(\pi n)$ as a factor. (c) Absolute Convergence Test failed.	None.	Answer: * Is $\{a_n\}$ alternating in sign? * Does $ a_n \rightarrow 0$ as $n \rightarrow \infty$? * Is $\{ a_n \}$ a decreasing function of <i>n</i> ?	 3 Yesses ⇒ Σ_{n=1}[∞] a_n converges. 0, 1 or 2 Yesses ⇒ Test fails.
Absolute Convergence Test	(a) When you would like all the terms to be positive to satisfy the hypotheses of another test.	None.	Find conv. or div. of $\sum_{n=1}^{\infty} a_n $ <i>Note:</i> Do <u>not</u> find conv. or div of $\sum_{n=1}^{\infty} a_n$	• $\Sigma a_n \operatorname{conv.} \Rightarrow \Sigma a_n \operatorname{conv.}$ • $\Sigma a_n \operatorname{div.} \Rightarrow \operatorname{Test} \operatorname{fails.}$
Absolute versus Conditional Convergence Test	(a) To show whether the convergence, if any, is absolute or conditional.	None.	Find conv. or div. of $\sum_{n=1}^{\infty} a_n $. If that diverges, then go on and determine conv. or div. of $\sum_{n=1}^{\infty} a_n$. <i>Alternatively</i> , find conv. or div. of $\sum_{n=1}^{\infty} a_n$. If it converges, then go on a determine conv or div. of $\sum a_n $.	 Σ a_n conv Σ a_n converges absolutely (Σ a_n div. and Σ a_n conv.) Σ a_n converges conditionally. Σ a_n div. ⇒ Σ a_n diverges. (Σ a_n conv. and Σ a_n div.) ⇒ cannot happen.
Ratio Test	 (a) Exponentials or factorials (or both) are dominating. (b) All "radius of convergence" problems. 	None.	Find $r = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$	• $r \in (-1,1) \Rightarrow$ $\sum a_n$ conv. absolutely. • $r \in (-\infty, -1) \cup (1,\infty) \Rightarrow$ $\sum a_n$ diverges. • $r = -1$ or $r = +1 \Rightarrow$ Test fails.
Root Test	(a) Terms appear to beg to have their n^{th} roots taken	Terms must be positive.	Find $r = \lim_{n \to \infty} \sqrt[n]{a_n}$	Conclude as for Ratio Test.

Name	When to use	Hypotheses	What you do	What you conclude
Definition of Convergence	 (a) To prove from first principles. (b) Sum telescopes. <i>Note</i>: Only the difficulty of the "What you do" part prevents this from being a universal test. There are no hypotheses and no "Test fails" component in the conclusion. It is, after all, the very <i>definition</i> of convergence. 	None.	Define $b_n = \sum_{i=1}^n a_i$. Somehow find and simplify b_n . Find $\lim_{n \to \infty} b_n$. Notice whether this limit exists as a real number. (Note that 0 is a real number but " ∞ " is not. The limit might also oscillate or otherwise fail to exist completely.)	 lim b_n exists as a real number ⇒ ∑_{i=1}[∞] a_i converges to the same number, ⇒ ∑_{n=1}[∞] a_n converges to the same number. Otherwise ⇒ ∑_{n=1}[∞] a_n diverges.
Cauchy Condensation Test	(a) You want to remove logarithms.(b) Just for fun.	Terms must be positive and decreasing.	Find the convergence or divergence of $\sum_{n=1}^{\infty} 2^n \cdot a_{(2^n)}$	• $\sum_{n=1}^{\infty} 2^n \cdot a_{(2^n)}$ and $\sum_{n=1}^{\infty} a_n$ conv. or div. together.
Ratio Comparison Test 1	(a) As an act of desperation.(b) To prove some other tests.	Everything must be positive.	Form, as test series, $\sum_{n=1}^{\infty} b_n$. Find $L_1 = \lim_{n \to \infty} \frac{(a_{n+1}/a_n)}{(b_{n+1}/b_n)}$. Find conv. or div. of $\sum_{n=1}^{\infty} b_n$.	 L₁ > 1 and ∑b_n div ⇒ ∑a_n div. L₁ < 1 and ∑b_n conv. ⇒ ∑a_n conv. Other cases ⇒ Test fails.
Ratio Comparison Test 2	(a) As an act of desperation.	Everything must be positive.	Form, as test series, $\sum_{n=1}^{\infty} b_n$. Find $L_2 = \lim_{n \to \infty} \left(\frac{a_{n+1}}{a_n} - \frac{b_{n+1}}{b_n} \right)$. Find conv. or div. of $\sum_{n=1}^{\infty} b_n$.	 L₂ > 0 and ∑b_n div ⇒ ∑a_n div. L₂ < 0 and ∑b_n conv. ⇒ ∑a_n conv. Other cases ⇒ Test fails.
First Order Raabe's Test	 (a) Ratio or Root Test failed unexpectedly. (b) Series is one of those named hypergeometric. 	Terms must be positive.	Find $L = \lim_{n \to \infty} \left(\frac{na_n}{a_{n+1}} - n \right)$.	• $L > 1 \implies \sum a_n$ conv. • $L < 1 \implies \sum a_n$ div. • $L = 1 \implies$ Test fails. (<i>Nota bene:</i> the conclusion is <i>reversed</i> from that for the Ratio Test.)

Table 3: Advanced Tests for Convergence

Table 4: Spectrum of Growing Functions

All functions displayed on the spectrum go to infinity as n goes to infinity.

 $\ln(\ln(n)) \quad \| \quad \ln(n) \quad \| \quad n^{0.01} \quad n^{1/2} = \sqrt{n} \quad n^{0.6} \quad n \quad n^2 \quad n^{3.8} \quad n^{5325} \quad \| \quad (1.0001)^n \quad (1.5)^n \quad 2^n \quad e^n \quad 327^n \quad n! \quad n^n \quad \| \quad e^{(e^n)} \quad (n!)!$

Table 5: Some Numerical Methods for Evaluating or Estimating the Sums of Convergent Series

Name	Hypotheses	Sum being estimated		Best estimate for the sum	Range of error	Notes
Finite Geometric	r must be fixed with respect to n .	$\sum_{n=a}^{b} r^{n}$	=	$\frac{r^a - r^{b+1}}{1 - r}$	± 0	<i>Mnemonic:</i> The sum of a geometric series is the first term minus the after-last term all over one minus the ratio.
Infinite Geometric	<i>r</i> must be fixed w.r.t. <i>n</i> and $ r < 1$.	$\sum_{n=a}^{\infty} r^n$	=	$\frac{r^a}{1-r}$	± 0	<i>Mnemonic:</i> As above, where "the after- last term" is taken to be $\lim_{n\to\infty} r^{n+1}$.
Telescoping	Series telescopes	$\sum_{n=a}^{\infty} (b_n - b_{n+1})$	=	$b_a - \lim_{n \to \infty} (b_n)$	± 0	Covers one case only; finding these sums in general is a <i>technique</i> not a <i>formula</i> .
Stabilizing Digits	Series converges by the Ratio Test, preferably with r not too close to 1.	$\sum_{n=1}^{\infty} a_n$		Compute partial sums, and place partial sums in a column. Look and see which digits have stabilized. Those digits are good.	$\pm 10^{-m}$	where <i>m</i> is the number of digits that have stabilized. Do not use this method unless the hypotheses are satisfied!
Integral	Series converges by the Integral Test.	$\sum_{n=1}^{\infty} a_n$	=	$\sum_{n=1}^{m-1} a_n + \int_m^\infty f(x) dx + \frac{a_m}{2}$	$\pm \frac{a_m}{2}$	In practice, the error is usually much lower.
Alternating	Series converges by the A.S.T.	$\sum_{n=1}^{\infty} a_n$	=	$\sum_{n=1}^{m-1} a_n + \frac{a_m}{2}$	$\pm \frac{ a_m }{2}$	Be very careful with the signs, plus or minus, in applying this formula.

Table 6: Some Famous Series

The Harmonic Series, $\sum_{n=1}^{\infty} 1/n$, diverges, slowly, to infinity, as is shown by the Integral Test or by Cauchy Condensation. The Alternating Harmonic Series, $\sum_{n=1}^{\infty} (-1)^{n+1}/n$, converges by the Alternating Series Test; it is known to converge slowly to ln 2. The Zeno Series, $\sum_{n=1}^{\infty} (1/2)^n$, converges to 1 by the Definition of Convergence. The Zero Series, $\sum_{n=1}^{\infty} 0$, converges to zero. The Infinite Accumulation of a Constant is the series $\sum_{n=1}^{\infty} 1$, which diverges to infinity by the Definition of Convergence. Various First-Logarithmic Series, $\sum_{n=2}^{\infty} 1/(n \cdot (\ln(n))^p)$ for various fixed real numbers p, converge for p > 1 and diverge otherwise, as is shown by the Integral Test.